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Abstract

Advances in the understanding of the molecular biology of central nervous system (CNS) tumors prompted a new World
Health Organization (WHO) classification scheme in 2021, only 5 years after the prior iteration. The 2016 version was the
first to include specific molecular alterations in the diagnoses of a few tumors, but the 2021 system greatly expanded this
approach, with over 40 tumor types and subtypes now being defined by their key molecular features. Many tumors have
also been reconceptualized into new “supercategories,” including adult-type diffuse gliomas, pediatric-type diffuse low-
and high-grade gliomas, and circumscribed astrocytic gliomas. Some entirely new tumors are in this scheme, particularly
pediatric tumors. Naturally, these changes will impact how CNS tumor patients are diagnosed and treated, including clinical
trial enrollment. This review addresses the most clinically relevant changes in the 2021 WHO book, including diffuse and
circumscribed gliomas, ependymomas, embryonal tumors, and meningiomas.
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Introduction

The fifth edition of the WHO Classification of Central Nerv-
ous System Tumors was released at the end of 2021, a mere
5 years after the fourth edition was published [1, 2]. Novel
techniques such as next generation sequencing, RNA expres-
sion profiling, and DNA methylation profiling have paved
the way for the discovery and classification of new enti-
ties, as well as more precise classification and stratification
of existing tumors [3]. These rapid changes in the under-
standing of the molecular features that define CNS tumors
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fostered the Consortium to Inform Molecular and Practical
Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) in
2017 to quickly provide updates in the pathological workup
of CNS tumors between WHO editions [4]. The fifth edi-
tion of the WHO Classification of Central Nervous System
Tumors incorporates this updated understanding of the
molecular underpinnings of CNS tumors while maintaining
their histopathologic roots. The purpose of this review is to
discuss how these updates will impact clinical care, focusing
on adult-type diffuse gliomas, pediatric-type diffuse gliomas,
circumscribed astrocytic gliomas, ependymal tumors, and
embryonal tumors (summarized in Table 1), as these are the
entities with the most dramatic changes.

Before discussing specific tumors, it is worth mention-
ing a few general changes in grading. The first is that WHO
grades, which were previously listed in Roman numerals, are
now listed in Arabic numerals. In addition, grading is now
done within tumor types as part of the integrated diagnosis,
so although grades still correspond to natural history, there
is not necessarily perfect equivalence between the same
numerical grade in different types of tumors, i.e., a grade 4
medulloblastoma does not necessarily mean the same prog-
nosis as a grade 4 IDH" glioblastoma. Also, the term “ana-
plasia” is no longer employed, instead only “WHO grade
3” is used in the diagnosis. Finally, since a grade 2 glioma
(for example) does not necessarily have the same general
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behavior or prognosis as a grade 2 tumor in WHO classifica-
tions of other neoplasms elsewhere in the body, the official
usage is “CNS WHO grade 2” not simply “WHO grade 2.
” However, for ease of reading, the latter approach is
adopted in this review.

Other changes in general nomenclature include “not
otherwise specified (NOS)” and “not elsewhere classified
(NEC)” [5]. NOS means that the molecular testing required
to classify a CNS lesion is not available. For example, if
a supratentorial lesion has ependymal morphology, but
sequencing and methylation profiling are not available, a
final diagnosis of “Supratentorial ependymoma, NOS”
would be appropriate. NEC, on the other hand, means that
the appropriate molecular testing was performed but did not
provide enough useful information for further classification.
Thus, if molecular testing was performed on that supraten-
torial ependymoma but failed to uncover a ZFTA or YAPI
fusion, it would be called “Supratentorial ependymoma,
NEC.”

Adult-Type Diffuse Gliomas

Diffuse gliomas, accounting for~70% of adult brain tumors,
are the most common type of primary brain tumor to arise in
adults [6] (the most common CNS neoplasm overall is meta-
static disease). Prior to 2016, morphologic features drove
the classification of all diffuse gliomas. Tumors with round,
uniform nuclei and cytoplasmic clearing were referred to
as oligodendrogliomas, those with clumped chromatin and
angulated nuclei were referred to as astrocytomas, and those
with intermediate features were called oligoastrocytomas
[7]. In the 2016 edition, molecular features were introduced
into the classification of gliomas, with /DH mutation and
1p/19q codeletion required for the diagnosis of oligodendro-
glioma, and IDH mutation status and histologic grade used
to parse astrocytomas into subtype [1]. In the 2021 classifi-
cation, diffuse gliomas are now sorted into three basic types
by morphology and molecular features with, grading done
within each type. Hybrid entities like oligoastrocytoma,
which are nearly always classified as other entities when
molecular testing is performed, are no longer listed [8, 9].
One key difference between the 2016 and 2021 WHO
classifications is in the way that IDH-wildtype gliomas are
defined and graded. Although high-grade morphologic fea-
tures such as mitoses, necrosis, and microvascular prolifera-
tion are still considered, all tumors lacking /DH mutations
that have concomitant gain of chromosome 7 and loss of
chromosome 10, EGFR amplification, or TERT promoter
mutations are called glioblastoma and are given a WHO
grade of 4 [10]. These tumors, which tend to occur in older
adults and are rare below the age of 55, are highly aggres-
sive, with death occurring within 15-18 months for most

patients even with chemotherapy and radiation [11]. For
most patients, symptoms related to mass effect develop rap-
idly, and high-grade imaging features, such as peripheral
enhancement and central necrosis, are usually present at
diagnosis. The current standard treatments include maximal
surgical resection (when anatomically feasible), radiation,
and temozolomide [12—14]. IDH wildtype glioblastoma is a
morphologically, genetically heterogeneous category com-
prised of multiple different subtypes, including a small cell
type (which mimics oligodendroglioma), a granular cell
type with PAS-positive cytoplasmic inclusions, an epithe-
lioid type with well-defined cytoplasmic borders and ample,
eosinophilic cytoplasm, a giant cell type, and a sarcomatous
type that may lose GFAP and olig2 expression and contain
heterologous elements. By definition, IDH-wildtype glio-
blastomas are negative for IDH1 R132H, and the majority
express markers of glial differentiation and retain normal
ATRX by immunohistochemistry (meaning that no ATRX
mutation is present). In addition to the aforementioned
EGFR, TERT promoter, and + 7/-10 phenotypes in the
diagnostic criteria, other common molecular abnormali-
ties include CDKN2A/B deletion, PTEN alterations, TP53
mutations, MDM?2 or MDM4 amplification, BRAF V600OE
mutations (especially the epithelioid subtype), and MGMT
promoter methylation [15-17]. Of these, MGMT promoter
methylation status is the most critical, as it predicts response
to alkylating chemotherapeutic drugs such as temozolomide
and lomustine [13, 18, 19]. MGMT promoter methylation
status predicts both overall and progression-free survival in
elderly patients with glioblastoma treated with alkylating
agents in addition to radiotherapy [20]. PTEN status may
also be important for predicting response to therapy. Some
studies show that PTEN mutations, which are present in
about 40% of gliomas, may render them more sensitive to
radiation therapy [21]. One study suggested that, in patients
with EGFR amplification, targeted EGFR inhibitors may
only be effective in patients with intact PTEN expression
[22]. A handful of case reports also suggest that BRAF
inhibitors may be effective only when BRAF V600E muta-
tions are present [23, 24]. More trials are needed in order
to determine which groups of patients might benefit from
targeted therapies.

Astrocytoma, IDH-mutant, is defined by a change-of-function
mutation in /DHI or IDH? resulting in overproduction of the
oncometabolite D-2-hydroxyglutarate, which acts as an inhibi-
tor of enzymes that use o-ketoglutarate as a cofactor, such as
certain DNA demethylases, resulting in genomic CpG hyper-
methylation and suppression of differentiation [25]. They most
often occur in younger adults (median age 38) and are rarely
diagnosed in adults over the age of 55. Patients usually present
with seizures and are found to have diffuse, T2 FLAIR hyper-
intense, supratentorial masses with little or no enhancement
[26]. The majority of IDH-mutant astrocytomas also have 7P53
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alterations resulting in strong nuclear accumulation of abnormal
P53 in>50% of tumor cell nuclei. About 90% of supratentorial
IDH-mutant astrocytomas also have ATRX mutations that result
in loss of normal ATRX expression in the tumor cells [27, 28].
This makes p53 and ATRX immunostains useful as part of a
panel when working up diffuse gliomas — a young patient with a
glioma that displays strong p53 expression and loss of ATRX is
likely to have a non-canonical IDH mutation if IDH1 R132H
immunostain is negative [27]. IDH-mutant astrocytoma grades
range from 2 to 4, based on the presence of anaplasia, mitotic
activity, necrosis, microvascular proliferation, and homozygous
CDKNZ2A/B deletion [29]. One major change between the 2016
and 2021 WHO Classifications is that, even when enough high-
grade features are present to warrant a grade 4 designation, IDH-
mutant astrocytomas are no longer referred to as glioblastomas,
since even high-grade IDH-mutant astrocytomas are less aggres-
sive than their IDH-wildtype counterparts [30]. Nevertheless, the
current recommended standard of therapy for high-grade IDH-
mutant gliomas remains similar to that for IDH-wildtype glio-
blastoma [12], although this may change as clinical trial target
patients based on /DH status as well as tumor grade.

In addition to whole arm 1p/19q codeletion, IDH muta-
tions are required for the diagnosis of oligodendro-
glioma, reflecting the fact that true 1p/19q codeletion
occurring from unbalanced translocation is always seen in
conjunction with IDH1 or IDH2 mutations [29, 31-33]. Like
IDH-mutant astrocytomas, these are relatively less aggres-
sive tumors that primarily occur in younger adults (median
age 43), although gliomatosis cerebri-like growth patterns and
seeding of the cerebrospinal fluid can sometimes be seen in
more advanced stages. In addition to /DH mutations and
1p/19q codeletion, the majority of oligodendrogliomas also
have TERT promoter mutations [32]. In contrast to /IDH-
mutant astrocytomas, oligodendrogliomas tend to have
retained ATRX expression and lack accumulation of p53,
since 1p/19q co-deletion is essentially mutually exclusive
with TP53 and ATRX alterations [34, 35]. Some oligo-
dendrogliomas have CDKN2A/B deletion, which predicts
more aggressive behavior when present [36]. As was
the case in the 2016 edition, grades range from 2 to 3 based
on the presence of anaplasia, mitotic activity, necrosis, and
microvascular proliferation [2]. Currently, radiation followed
by adjuvant procarbazine, lomustine, and vincristine (PCV
therapy) is the recommended treatment protocol for oligo-
dendrogliomas [37, 38].

Pediatric-Type Diffuse Gliomas
Since the 2016 WHO Classification was published, under-
standing of the distinct biology of pediatric-type diffuse

gliomas has exploded, resulting in the addition of distinct
chapters containing eight newly added tumor types [2].
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Four are classified as diffuse low-grade gliomas, reflect-
ing their relatively indolent clinical behavior despite lack
of a clear tumor: nontumor border. All are characterized by
mutations that result in mitogen-activated protein kinase
(MAPK) pathway activation and by the absence of IDH or
histone mutations [39]. The first of these, “diffuse astro-
cytoma, MYB- or MYBL[-altered,” is defined by MYB- or
MYBLI- fusions, with the most common fusion partners being
PCDHGAI, MMP16, and MAML?2 [40-43]. Angiocentric
gliomas are only distinguishable from diffuse astrocytoma,
MYB- or MYBLI-altered by clustering of tumor cells around
blood vessels, and a different MYB fusion partner (usually
OKI) [40-42, 44]. “Polymorphous low-grade neuroepithelial
tumor of the young (PLNTY)” typically has a mixture of
cells with oligodendroglial and astrocytic morphology with
aberrant CD34 expression (Fig. 1), and frequently features
perivascular rosettes and coarse calcifications. PLNTY's
have a variety of MAPK-activating alterations, including BRAF
V600E mutations, NTRK alterations, and fusions involving
FGFR2 or FGFR3 [45]. “Diffuse low-grade glioma, MAPK
pathway-altered” commonly has BRAF V600E mutations or
FGFRI alterations, much like both PLNTY and low-grade
glioneuronal tumors (e.g., dysembryoplastic neuroepithelial
tumor and ganglioglioma) [42, 46]. All four of these tumor
types occur in the cerebral hemispheres, have low-grade fea-
tures on imaging, often present with seizures, and show a
predilection for teenagers or young adults [40, 42, 44]. All
four also show closely related DNA methylation profiles
[47], so it remains to be seen whether they will ultimately
remain distinct tumor types in future editions of the WHO
classification. All have targetable MAPK pathway altera-
tions, and early studies using targeted therapies have been
promising [48-50].

Four of the pediatric-type diffuse gliomas are classified
as high-grade: “diffuse midline glioma, H3 K27-altered;”
“diffuse hemispheric glioma, H3 G34-mutant;” “diffuse
pediatric-type high-grade glioma, H3-wildtype and IDH-
wildtype;” “infant-type hemispheric glioma” [2, 26, 51].
The latter three were newly added to the 2021 edition of
the WHO Classification. Like the low-grade pediatric gli-
omas, all four lack IDH mutations and should be consid-
ered in young adult patients with /DH wildtype gliomas.
Both diffuse midline glioma, H3 K27-altered and diffuse
hemispheric glioma, H3 G34-mutant are driven by histone
mutations. For reasons that are not entirely understood,
tumors with H3 K27 mutations tend to occur in midline
structures, while those with H3 G34 mutations tend to
occur in the cerebral hemispheres [52-56]. Although dif-
fuse midline gliomas have somewhat variable morphology,
with some having high proliferation rates and necrosis like
the high-grade gliomas seen in adults (Fig. 2) and others
lacking those features, they all have decreased H3K27Me3
by immunohistochemistry. In diffuse midline gliomas, such
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Fig. 1 Polymorphous low-grade
neuroepithelial tumor of the
young. In keeping with the
“polymorphous” descriptor,
polymorphous low-grade neu-
roepithelial tumor of the young
can have a variety of appear-
ances, including that of a diffuse
glioma (A), ependymoma (B),
and oligodendroglioma (C).
These tumors an have abundant
mineralization (D) and show
abundant CD34 positivity (E)
and OLIG2 nuclear staining
(F). This particular tumor had

a BRAF V600E mutation, and
clustered among PLNTY's by
DNA methylation profiling

loss occurs by a lysine-to-methionine substitution in the his-
tone H3 protein, resulting in inhibition of the EZH?2 catalytic
subunit of the polycomb repressive complex 2 (PRC2) pro-
tein [57]. In histone-mutated hemispheric gliomas, it occurs
when substitution of a glycine at position 35 for arginine or
valine results in reduced binding of SETD2 and KDM2A
to the tail of the histone H3 protein, resulting in diminished
H3 K37 Me3 [58, 59]. Both mechanisms lead to increased
proliferation and decreased differentiation, and both his-
tone-mutant gliomas are aggressive tumors with uniformly
poor prognoses [51, 52, 60]. The third tumor, high-grade

Fig. 2 Diffuse midline glioma,
H3 K27-altered. Diffuse midline
gliomas tend to look like most
other diffusely infiltrative
gliomas (A), including immu-
nopositivity for GFAP (B) and
OLIG2 (C). In keeping with
their high-grade nature, Ki67
is usually quite high (D). H3
K27M-specific antibody often
shows robust nuclear staining
(E); those same tumor cells
will be weak to negative for
H3K27me3, whereas admixed
nonneoplastic cells will still
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glioma, H3-wildtype and IDH-wildtype, is a category that
encompasses high-grade diffuse gliomas that lack both
histone and /DH mutations and can have multiple driver
mutations (Fig. 3). Some have similar driver mutations as
adult IDH-wildtype gliomas, including EGFR, PDGFRA,
TP53, and NF1, but their methylation profiles are distinct
from adult IDH-wildtype gliomas [61]. Three different sub-
groups have been identified by DNA methylation profiling:
pHGG RTK1, pHGG RTK2, and pHGG MYCN. Tumors of
the pHGG RTKI1 subtype most frequently have PDGFRA
alterations and are the type most frequently found in patients
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Fig.3 Diffuse pediatric-type high-grade glioma, H3-wildtype and
IDH-wildtype. This diffuse pediatric-type high-grade glioma, H3
wildtype and IDH-wildtype, looked like a typical diffuse glioma infil-
trating into surrounding brain tissue (A); many tumor cells will be
Ki67 positive (B). This particular tumor had MYCN amplification and
TP53 mutation, mapped to diffuse pediatric-type high-grade glioma,
H3 wildtype, and IDH-wildtype by DNA methylation profiling, and
had already disseminated throughout the cerebrospinal fluid at the
time of clinical presentation. Scale bar =50 microns in both panels

with Lynch syndrome. pHGG RTK2 tumors most frequently
have EGFR amplification and TERT promoter mutations,
while pHGG MYCN tumors have MYCN activation (usu-
ally amplification) [61]. Like pediatric high-grade gliomas
with histone mutations, these tumors are highly aggressive
with poor prognoses, with 2-year survival rate of 23.5%
and median overall survival of only 17 months, even when
MGMT promoter methylation is present [54]. Infant-type
hemispheric glioma (Fig. 4) is a large, hemispheric mass
that typically occurs during the first year of life and is usu-
ally driven by RTK-activating fusions, including those in
the NTRK family, ROS1, ALK, or MET [62]. Despite their
histopathologic similarity to IDH-wildtype glioblastomas,
these have a better prognosis than the other three pediatric-
type high-grade gliomas, with 5-year survival rates ranging
from 25 to 50%, and there are some data suggesting that they
respond to drugs targeting whichever RTK is altered [63].

Circumscribed Astrocytic Gliomas

Gliomas with more well-delineated borders separating
them from the surrounding brain parenchyma, previously
referred to as “other astrocytic tumors,” are now catego-
rized as circumscribed astrocytic gliomas. This category
includes pilocytic astrocytoma, subependymal giant cell
tumor, pleomorphic xanthoastrocytoma, chordoid glioma
(Table 1), “astroblastoma, MN/-altered,” and “high-grade
astrocytoma with piloid features” [2, 51]. Most of the enti-
ties in this category are well established with only minor
changes in the names, e.g., astroblastoma, MNI-altered and
chordoid glioma. Astroblastomas, with their perivascular
rosettes and reverse nuclear polarity, share some
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Fig.4 Infant-type hemispheric glioma. Morphologically, infant-type
hemispheric gliomas may be indistinguishable from adult-type IDH" glio-
blastomas, with palisading necrosis (A), abundant mitoses (B), variable
GFAP positivity (C), and elevated Ki67 (D). However, they will not
have the same molecular profile as glioblastomas; this tumor had an
isolated NTRK fusion, and mapped to infant-type hemispheric glioma
by DNA methylation profiling. Scale bar=250 microns in A, 50
microns in B-D

histomorphologic features with ependymal and embryonal
tumors (Fig. 5) but are now defined by MNI alterations
[64—66]. Patients generally do well following surgical resec-
tion, but when anatomy precludes complete excision, chem-
otherapy and radiation offer some benefit [67]. Chordoid
glioma (formerly known as “chordoid glioma of the third
ventricle”), which nearly always occurs in the anterior third
ventricle of adults, is comprised of spindled to epithelioid
TTF1- and GFAP-positive cells in a myxoid stroma, a recur-
rent p.D463H missense mutation in the PRKCA gene, and
is frequently separated from the adjacent brain parenchyma
with a dense, lymphoplasmacytic infiltrate [68, 69].
High-grade astrocytoma with piloid features, the only new
circumscribed astrocytic glioma, is an aggressive astrocytic
neoplasm with a combination of MAPK pathway-activating
alterations (e.g., involving NF1, FGFR, or BRAF), ATRX
mutations (manifesting as loss of normal ATRX immu-
nostain), and homozygous CDKN2A/B deletion [70]. It can
occur anywhere in the central nervous system but most often
arises in the posterior fossa, and typically occurs in middle-
aged adults [70]. The morphologic features are variable and
can resemble glioblastoma or pleomorphic xanthoastrocy-
toma (PXA); features reminiscent of pilocytic astrocytoma,
such as eosinophilic granular bodies, Rosenthal fibers, and
long, delicate processes are only seen in a third of cases.



Major Features of the 2021 WHO Classification of CNS Tumors

1699

Fig.5 Astroblastoma. Astro-
blastomas can show a variety of
morphologies, including heavy
sclerosis and mineralization
(A). Tumor cells show variable
GFAP immunopositivity (B)
but are generally positive for
OLIG2 (C), epithelial mem-
brane antigen (D), podoplanin
(E), and SATB2 (F). Scale bar
in F=100 microns in all panels

While most of these tumors arise de novo, a small subset
arise in pre-existing grade 1 pilocytic astrocytoma and were
previously called “anaplastic pilocytic astrocytomas” [70].
Recent studies using genomic DNA methylation profiling
revealed that high-grade astrocytoma with piloid features
have their own distinct cluster [70]. There is only one ret-
rospective study with any data on long-term prognosis, but
the 5-year survival rate is roughly 50% and overall survival
appears to be similar to that for patients with astrocytoma,
IDH-mutant, WHO grade 4 [70]. As with some of the other
more recently defined entities, it remains to be seen whether
high-grade astrocytomas with piloid features respond better
to conventional therapies versus targeted therapies.

Sometimes, it can be difficult to distinguish between cir-
cumscribed and diffuse astrocytic gliomas. PXAs, for exam-
ple, can look very similar to epithelioid glioblastomas, espe-
cially if the PXA is grade 3 with numerous mitoses and/or
necrosis. Both are IDH wildtype, both can have CDKN2A/B
deletion and MAPK-activating alterations (e.g., BRAF
V600E), and both can arise in similar locations and age
groups. Genomic methylation profiling is particularly help-
ful in such circumstances, as many tumors thought to be
epithelioid glioblastomas actually map either to PXA or
pediatric high-grade glioma, RTK1 subtype [71].

Ependymal Tumors

Because of advanced molecular testing techniques such as
DNA methylation profiling, categorization of ependymomas
has completely changed from being based on morphology
to being based on location and molecular alteration [72].

Tanycytic, clear cell, and papillary are listed as morphologic
phenotypes rather than separate subtypes, and anaplastic
ependymoma is no longer listed as an entity [2]. The major-
ity of supratentorial ependymomas have fusions involving
either ZFTA or YAPI and are derived from radial glial cells
[73]. ZFTA fusion-positive ependymomas are more com-
mon, comprising 25-58% of all supratentorial ependymo-
mas in adults and 66-84% in children [74-76]. The most
common fusion partner is RELA, and homozygous deletion
of CKDN2A/B, which predicts more aggressive clinical
behavior, may be present [77]. YAPI fusion-positive epend-
ymomas, which show more indolent behavior than ZFTA
fusion-positive ependymomas, are rare and tend to occur
primarily in young children [78]. Other genetic alterations
predicting their clinical behavior have not yet been well stud-
ied. Either can be assigned a grade of 2 or 3, depending on
the presence of mitotic activity and microvascular prolifera-
tion [79].

Posterior fossa ependymomas are sorted into PFA and
PFB categories by DNA methylation profiling [80]. Like
diffuse midline gliomas, PFA ependymomas show loss of
H3 K27 trimethylation; however, only a small subset (~4%)
have histone mutations [81]. Instead, PFA ependymomas
express more Enhancer of Zest Homologs Inhibitory Protein
(EZHIP), which binds to and inhibits the catalytic domain of
PRC2 in a similar manner to the H3 K27M mutated histone
protein [81, 82]. Such EZHIP overexpression also drives
the rare diffuse midline gliomas that lack histone mutations,
and in both PFA ependymomas and diffuse midline gliomas,
H3 histone mutations and EZHIP alterations are mutually
exclusive [83]. PFB ependymomas usually show whole chro-
mosome abnormalities such as 22q loss, monosomy 6, and
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monosomy 18 [80, 84]. In addition, PFB ependymomas are
more likely to occur in older adults and adolescents and are
less aggressive than PFA ependymomas. Gain of chromo-
some 1q and incomplete resection are poor prognostic indi-
cators for all types of posterior fossa ependymomas, and loss
of 13q suggests worse behavior in PFB ependymomas [85].

Spinal ependymomas, which are their own cluster on
DNA methylation profiling, have 22q loss like PFB epend-
ymomas [84]. These occur more frequently as intramedul-
lary masses in the cervicothoracic region of the spinal cord,
in contrast to myxopapillary ependymoma, which occur in
the lumbar region [86]. For the most part, spinal epend-
ymomas have good outcomes and long progression free
survival times, except for the subset with MYCN amplifica-
tion, which spread throughout the CSF [87]. Myxopapillary
ependymoma has its own distinct methylation cluster and
was historically given a WHO grade of 1 due to its generally
good prognosis and bland appearance [1]. But, because of
the possibility of CSF dissemination, which is more com-
mon in younger patients, and because so many patients live
with persistent disease requiring multiple operations and
radiotherapy, they are now considered WHO grade 2 in the
2021 classification [88-90].

Subependymomas, which are still considered WHO grade
1, are indolently growing glial tumors with subependymal
morphology. Approximately two-thirds of them arise in the
fourth ventricle, with the remainder being supratentorial
[91]. Like ependymomas, they can show cystic changes and
calcification on imaging but are less likely to show much
enhancement after contrast administration [92]. The most
common genetic alterations are the loss of chromosome 19,
partial loss of chromosome 6, and even H3 K27 mutations,
all three of which can occur in brainstem subependymomas
[84]. Overall, the clinical behavior of these tumors is benign
with occurrence being rare even after subtotal resection,
even when H3 K27 mutations are present [91, 92].

Embryonal Tumors

Like pediatric gliomas and ependymal tumors, DNA meth-
ylation profiling has resulted in an explosion in the num-
ber of embryonal tumor types, both from the splitting of
existing tumor types into additional categories and from the
addition of newly characterized types of tumors [93, 94].
Medulloblastomas, the most common embryonal tumors,
are divided into four different molecular subtypes, including
WNT-activated, SHH-activated and TP53-wildtype, SHH-
activated and TP53-mutant, and non-WNT/non-SHH. Pedi-
atric WNT-activated medulloblastomas respond extremely
well to existing therapies and have excellent prognoses, but
retain a WHO grade of 4 to reflect their aggressive nature
without treatment [93, 95-97]. SHH-activated tumors are
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more aggressive if TP53 mutations or MYCN amplifica-
tion are present [96]. Non-WNT/non-SHH tumors, formerly
known as group 3 and group 4 medulloblastomas, comprise
the majority of medulloblastomas. As is the case with SHH-
activated tumors, MYCN amplification is a poor prognostic
indicator [98]. Non-WNT/Non-SHH tumors can be further
divided into 8 different categories by DNA methylation pro-
filing, with subgroups 2, 3, and 8 having the worst outcomes
and groups 6 and 7, which are more likely to have favorable
cytogenetic aberrations, such as gain of chromosome 7 and
loss of chromosomes 8 or 11, having the best [93].

Three new entities have been added to embryonal tumors.
The first of these, cribriform neuroepithelial tumor, is a
provisional entry. It tends to occur in periventricular loca-
tions and has SMARCBI mutations and INI/ loss, much like
atypical teratoid rhabdoid tumors [99, 100]. Unlike atypical
teratoid rhabdoid tumor, however, cribriform neuroepithe-
lial tumors lack rhabdoid morphology and have favorable
response to therapy with average survival times of approxi-
mately 10 years [99]. CNS neuroblastoma, FOXR2-activated,
consists of sheets of small, mitotically active, primitive cells
with high N/C ratios that form occasional rosettes (Fig. 6).
Like neuroblastomas, they can harbor areas of neuropil and
ganglion cells. They are rare and newly classified, so there
is currently little data on their prognosis [101]. CNS tumor
with BCOR internal tandem duplication is defined by a het-
erozygous internal tandem duplication in exon 15 of BCOR
[102]. They have small, uniform, ovoid to spindle-shaped
cells, often arranged in perivascular pseudorosettes that can
easily be confused with those in ependymal tumors or astro-
blastomas (Fig. 7), and can also have palisading necrosis
reminiscent of that in glioblastomas. BCOR internal tandem
duplications do not co-occur with ZFTA or YAP1 fusions,

Fig.6 CNS neuroblastoma, FOXR2-activated. CNS neuroblastoma
with FOXR2-activation features sheets of tumor cells with small
round nuclei and a high nuclear:cytoplasmic ratio like most other
embryonal tumors, although the tumor shown here had more abun-
dant neuropil (A). Like many other new tumor entities, these tumor
cells often arrange themselves in a perivascular pattern (B). Most
such tumors will also show other high-grade features like necrosis
and mitoses, but this one did not. Still, it clearly mapped to CNS neu-
roblastoma with FOXR2-activation by DNA methylation profiling.
Scale bar =250 microns in A, 100 microns in B
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Fig.7 CNS tumor with BCOR internal tandem duplication. Many
CNS tumors with BCOR internal tandem duplication will look like
anaplastic ependymomas, including this one (A, B). But these tumors
have a unique molecular profile, and their own DNA methylation pat-
tern. Scale bar= 100 microns

MN] alterations, IDH mutations, or H3 mutations, and DNA
methylation profiling can be used to reliably distinguish
them from other morphologically similar entities [102].
These tumors are rare, which limits prognostic data, but case
series suggest the overall prognosis to be poor [102].

Meningioma

Meningothelial tumors are all categorized as one hetero-
geneous type, with 15 distinct morphologic subtypes that
range in WHO grade from 1 to 3 [2]. Numerous studies char-
acterizing the molecular alterations seen in meningiomas,
and how they correspond to location and morphology, have
been performed [103—-106]; however, meningiomas are still
mostly graded the same way they were in the 2016 classifica-
tion with two exceptions. Since TERT promoter mutations
and homozygous deletion of CDKN2A/B have been associ-
ated with more aggressive clinical behavior, these are now
sufficient for a WHO grade of 3 even if the histopathology
does not otherwise meet the criteria [107, 108]. Complete
resection is still the primary way meningiomas are man-
aged; however, mutations known to lead to more aggressive
behavior can be used to help guide the decision for adjuvant
radiation or chemotherapy.

Conclusions

The 2021 WHO CNS tumor classification draws on a wealth
of data from molecular testing that led to the creation of new
entities and more accurate stratification of pre-existing enti-
ties. Future clinical trials can recruit more homogeneous cat-
egories of patients, which will allow for better understanding
of how tumor biology corresponds to treatment response
and for the development of more targeted therapies. How-
ever, more multi-institutional and multi-national studies will

be needed to address the less common tumor types. More
long-term prognostic studies will also be needed to better
characterize some of the newer entities.
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