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Abstract
Advances in the understanding of the molecular biology of central nervous system (CNS) tumors prompted a new World 
Health Organization (WHO) classification scheme in 2021, only 5 years after the prior iteration. The 2016 version was the 
first to include specific molecular alterations in the diagnoses of a few tumors, but the 2021 system greatly expanded this 
approach, with over 40 tumor types and subtypes now being defined by their key molecular features. Many tumors have 
also been reconceptualized into new “supercategories,” including adult-type diffuse gliomas, pediatric-type diffuse low- 
and high-grade gliomas, and circumscribed astrocytic gliomas. Some entirely new tumors are in this scheme, particularly 
pediatric tumors. Naturally, these changes will impact how CNS tumor patients are diagnosed and treated, including clinical 
trial enrollment. This review addresses the most clinically relevant changes in the 2021 WHO book, including diffuse and 
circumscribed gliomas, ependymomas, embryonal tumors, and meningiomas.
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Introduction

The fifth edition of the WHO Classification of Central Nerv-
ous System Tumors was released at the end of 2021, a mere 
5 years after the fourth edition was published [1, 2]. Novel 
techniques such as next generation sequencing, RNA expres-
sion profiling, and DNA methylation profiling have paved 
the way for the discovery and classification of new enti-
ties, as well as more precise classification and stratification 
of existing tumors [3]. These rapid changes in the under-
standing of the molecular features that define CNS tumors 

fostered the Consortium to Inform Molecular and Practical 
Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) in 
2017 to quickly provide updates in the pathological workup 
of CNS tumors between WHO editions [4]. The fifth edi-
tion of the WHO Classification of Central Nervous System 
Tumors incorporates this updated understanding of the 
molecular underpinnings of CNS tumors while maintaining 
their histopathologic roots. The purpose of this review is to 
discuss how these updates will impact clinical care, focusing 
on adult-type diffuse gliomas, pediatric-type diffuse gliomas, 
circumscribed astrocytic gliomas, ependymal tumors, and 
embryonal tumors (summarized in Table 1), as these are the 
entities with the most dramatic changes.

Before discussing specific tumors, it is worth mention-
ing a few general changes in grading. The first is that WHO 
grades, which were previously listed in Roman numerals, are  
now listed in Arabic numerals. In addition, grading is now 
done within tumor types as part of the integrated diagnosis, 
so although grades still correspond to natural history, there 
is not necessarily perfect equivalence between the same 
numerical grade in different types of tumors, i.e., a grade 4 
medulloblastoma does not necessarily mean the same prog-
nosis as a grade 4  IDHwt glioblastoma. Also, the term “ana-
plasia” is no longer employed, instead only “WHO grade 
3” is used in the diagnosis. Finally, since a grade 2 glioma 
(for example) does not necessarily have the same general 
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behavior or prognosis as a grade 2 tumor in WHO classifica-
tions of other neoplasms elsewhere in the body, the official 
usage is “CNS WHO grade 2” not simply “WHO grade 2. 
” However, for ease of reading, the latter approach is  
adopted in this review.

Other changes in general nomenclature include “not 
otherwise specified (NOS)” and “not elsewhere classified 
(NEC)” [5]. NOS means that the molecular testing required 
to classify a CNS lesion is not available. For example, if 
a supratentorial lesion has ependymal morphology, but 
sequencing and methylation profiling are not available, a 
final diagnosis of “Supratentorial ependymoma, NOS” 
would be appropriate. NEC, on the other hand, means that 
the appropriate molecular testing was performed but did not 
provide enough useful information for further classification. 
Thus, if molecular testing was performed on that supraten-
torial ependymoma but failed to uncover a ZFTA or YAP1 
fusion, it would be called “Supratentorial ependymoma, 
NEC.”

Adult‑Type Diffuse Gliomas

Diffuse gliomas, accounting for ~70% of adult brain tumors, 
are the most common type of primary brain tumor to arise in 
adults [6] (the most common CNS neoplasm overall is meta-
static disease). Prior to 2016, morphologic features drove 
the classification of all diffuse gliomas. Tumors with round, 
uniform nuclei and cytoplasmic clearing were referred to 
as oligodendrogliomas, those with clumped chromatin and 
angulated nuclei were referred to as astrocytomas, and those 
with intermediate features were called oligoastrocytomas 
[7]. In the 2016 edition, molecular features were introduced 
into the classification of gliomas, with IDH mutation and 
1p/19q codeletion required for the diagnosis of oligodendro-
glioma, and IDH mutation status and histologic grade used 
to parse astrocytomas into subtype [1]. In the 2021 classifi-
cation, diffuse gliomas are now sorted into three basic types 
by morphology and molecular features with, grading done 
within each type. Hybrid entities like oligoastrocytoma, 
which are nearly always classified as other entities when 
molecular testing is performed, are no longer listed [8, 9].

One key difference between the 2016 and 2021 WHO 
classifications is in the way that IDH-wildtype gliomas are 
defined and graded. Although high-grade morphologic fea-
tures such as mitoses, necrosis, and microvascular prolifera-
tion are still considered, all tumors lacking IDH mutations 
that have concomitant gain of chromosome 7 and loss of 
chromosome 10, EGFR amplification, or TERT promoter 
mutations are called glioblastoma and are given a WHO 
grade of 4 [10]. These tumors, which tend to occur in older 
adults and are rare below the age of 55, are highly aggres-
sive, with death occurring within 15–18 months for most 

patients even with chemotherapy and radiation [11]. For 
most patients, symptoms related to mass effect develop rap-
idly, and high-grade imaging features, such as peripheral 
enhancement and central necrosis, are usually present at 
diagnosis. The current standard treatments include maximal 
surgical resection (when anatomically feasible), radiation, 
and temozolomide [12–14]. IDH wildtype glioblastoma is a 
morphologically, genetically heterogeneous category com-
prised of multiple different subtypes, including a small cell 
type (which mimics oligodendroglioma), a granular cell 
type with PAS-positive cytoplasmic inclusions, an epithe-
lioid type with well-defined cytoplasmic borders and ample, 
eosinophilic cytoplasm, a giant cell type, and a sarcomatous 
type that may lose GFAP and olig2 expression and contain 
heterologous elements. By definition, IDH-wildtype glio-
blastomas are negative for IDH1 R132H, and the majority 
express markers of glial differentiation and retain normal 
ATRX by immunohistochemistry (meaning that no ATRX 
mutation is present). In addition to the aforementioned 
EGFR, TERT promoter, and + 7/-10 phenotypes in the 
diagnostic criteria, other common molecular abnormali-
ties include CDKN2A/B deletion, PTEN alterations, TP53 
mutations, MDM2 or MDM4 amplification, BRAF V600E 
mutations (especially the epithelioid subtype), and MGMT 
promoter methylation [15–17]. Of these, MGMT promoter 
methylation status is the most critical, as it predicts  response 
to alkylating chemotherapeutic drugs such as temozolomide 
and lomustine [13, 18, 19]. MGMT promoter methylation 
status predicts both overall and progression-free survival in 
elderly patients with glioblastoma treated with alkylating 
agents in addition to radiotherapy [20]. PTEN status may 
also be important for predicting response to therapy. Some 
studies show that PTEN mutations, which are present in 
about 40% of gliomas, may render them more sensitive to 
radiation therapy [21]. One study suggested that, in patients 
with EGFR amplification, targeted EGFR inhibitors may 
only be effective in patients with intact PTEN expression 
[22]. A handful of case reports also suggest that BRAF 
inhibitors may be effective only when BRAF V600E muta-
tions are present [23, 24]. More trials are needed in order 
to determine which groups of patients might benefit from 
targeted therapies.

Astrocytoma, IDH-mutant, is defined by a change-of-function 
mutation in IDH1 or IDH2 resulting in overproduction of the 
oncometabolite D-2-hydroxyglutarate, which acts as an inhibi-
tor of enzymes that use α-ketoglutarate as a cofactor, such as  
certain DNA demethylases, resulting in genomic CpG hyper-
methylation and suppression of differentiation [25]. They most 
often occur in younger adults (median age 38) and are rarely 
diagnosed in adults over the age of 55. Patients usually present 
with seizures and are found to have diffuse, T2 FLAIR hyper-
intense, supratentorial masses with little or no enhancement 
[26]. The majority of IDH-mutant astrocytomas also have TP53 
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alterations resulting in strong nuclear accumulation of abnormal 
p53 in >50% of tumor cell nuclei. About 90% of supratentorial 
IDH-mutant astrocytomas also have ATRX mutations that result 
in loss of normal ATRX expression in the tumor cells [27, 28].  
This makes p53 and ATRX immunostains useful as part of a  
panel when working up diffuse gliomas – a young patient with a  
glioma that displays strong p53 expression and loss of ATRX is  
likely to have a non-canonical IDH mutation if IDH1 R132H  
immunostain is negative [27]. IDH-mutant astrocytoma grades 
range from 2 to 4, based on the presence of anaplasia, mitotic 
activity, necrosis, microvascular proliferation, and homozygous 
CDKN2A/B deletion [29]. One major change between the 2016 
and 2021 WHO Classifications is that, even when enough high-
grade features are present to warrant a grade 4 designation, IDH-
mutant astrocytomas are no longer referred to as glioblastomas, 
since even high-grade IDH-mutant astrocytomas are less aggres-
sive than their IDH-wildtype counterparts [30]. Nevertheless, the 
current recommended standard of therapy for high-grade IDH-
mutant gliomas remains similar to that for IDH-wildtype glio-
blastoma [12], although this may change as clinical trial target 
patients based on IDH status as well as tumor grade.

In addition to whole arm 1p/19q codeletion, IDH muta-
tions are required for the diagnosis of oligodendro-
glioma, reflecting the fact that true 1p/19q codeletion  
occurring from unbalanced translocation is always seen in 
conjunction with IDH1 or IDH2 mutations [29, 31–33]. Like  
IDH-mutant astrocytomas, these are relatively less aggres-
sive tumors that primarily occur in younger adults (median  
age 43), although gliomatosis cerebri-like growth patterns and 
seeding of the cerebrospinal fluid can sometimes be seen in  
more advanced stages. In addition to IDH mutations and 
1p/19q codeletion, the majority of oligodendrogliomas also 
have TERT promoter mutations [32]. In contrast to IDH- 
mutant astrocytomas, oligodendrogliomas tend to have 
retained ATRX expression and lack accumulation of p53, 
since 1p/19q co-deletion is essentially mutually exclusive 
with TP53 and ATRX alterations [34, 35]. Some oligo-
dendrogliomas have CDKN2A/B deletion, which predicts 
more aggressive behavior when present [36]. As was  
the case in the 2016 edition, grades range from 2 to 3 based 
on the presence of anaplasia, mitotic activity, necrosis, and 
microvascular proliferation [2]. Currently, radiation followed  
by adjuvant procarbazine, lomustine, and vincristine (PCV 
therapy) is the recommended treatment protocol for oligo-
dendrogliomas [37, 38].

Pediatric‑Type Diffuse Gliomas

Since the 2016 WHO Classification was published, under-
standing of the distinct biology of pediatric-type diffuse 
gliomas has exploded, resulting in the addition of distinct 
chapters containing eight newly added tumor types [2].  

Four are classified as diffuse low-grade gliomas, reflect-
ing their relatively indolent clinical behavior despite lack  
of a clear tumor: nontumor border. All are characterized by 
mutations that result in mitogen-activated protein kinase  
(MAPK) pathway activation and by the absence of IDH or  
histone mutations [39]. The first of these, “diffuse astro-
cytoma, MYB- or MYBL1-altered,” is defined by MYB- or 
MYBL1- fusions, with the most common fusion partners being  
PCDHGA1, MMP16, and MAML2 [40–43]. Angiocentric 
gliomas are only distinguishable from diffuse astrocytoma, 
MYB- or MYBL1-altered by clustering of tumor cells around 
blood vessels, and a different MYB fusion partner (usually 
QKI) [40–42, 44]. “Polymorphous low-grade neuroepithelial 
tumor of the young (PLNTY)” typically has a mixture of 
cells with oligodendroglial and astrocytic morphology with 
aberrant CD34 expression (Fig. 1), and frequently features 
perivascular rosettes and coarse calcifications. PLNTYs  
have a variety of MAPK-activating alterations, including BRAF  
V600E mutations, NTRK alterations, and fusions involving 
FGFR2 or FGFR3 [45]. “Diffuse low-grade glioma, MAPK 
pathway-altered” commonly has BRAF V600E mutations or 
FGFR1 alterations, much like both PLNTY and low-grade 
glioneuronal tumors (e.g., dysembryoplastic neuroepithelial 
tumor and ganglioglioma) [42, 46]. All four of these tumor 
types occur in the cerebral hemispheres, have low-grade fea-
tures on imaging, often present with seizures, and show a 
predilection for teenagers or young adults [40, 42, 44]. All 
four also show closely related DNA methylation profiles 
[47], so it remains to be seen whether they will ultimately 
remain distinct tumor types in future editions of the WHO 
classification. All have targetable MAPK pathway altera-
tions, and early studies using targeted therapies have been 
promising [48–50].

Four of the pediatric-type diffuse gliomas are classified 
as high-grade: “diffuse midline glioma, H3 K27-altered;” 
“diffuse hemispheric glioma, H3 G34-mutant;” “diffuse 
pediatric-type high-grade glioma, H3-wildtype and IDH-
wildtype;” “infant-type hemispheric glioma” [2, 26, 51]. 
The latter three were newly added to the 2021 edition of 
the WHO Classification. Like the low-grade pediatric gli-
omas, all four lack IDH mutations and should be consid-
ered in young adult patients with IDH wildtype gliomas. 
Both diffuse midline glioma, H3 K27-altered and diffuse 
hemispheric glioma, H3 G34-mutant are driven by histone 
mutations. For reasons that are not entirely understood, 
tumors with H3 K27 mutations tend to occur in midline 
structures, while those with H3 G34 mutations tend to 
occur in the cerebral hemispheres [52–56]. Although dif-
fuse midline gliomas have somewhat variable morphology, 
with some having high proliferation rates and necrosis like 
the high-grade gliomas seen in adults (Fig. 2) and others 
lacking those features, they all have decreased H3K27Me3 
by immunohistochemistry. In diffuse midline gliomas, such 
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loss occurs by a lysine-to-methionine substitution in the his-
tone H3 protein, resulting in inhibition of the EZH2 catalytic 
subunit of the polycomb repressive complex 2 (PRC2) pro-
tein [57]. In histone-mutated hemispheric gliomas, it occurs 
when substitution of a glycine at position 35 for arginine or 
valine results in reduced binding of SETD2 and KDM2A 
to the tail of the histone H3 protein, resulting in diminished 
H3 K37 Me3 [58, 59]. Both mechanisms lead to increased 
proliferation and decreased differentiation, and both his-
tone-mutant gliomas are aggressive tumors with uniformly 
poor prognoses [51, 52, 60]. The third tumor, high-grade 

glioma, H3-wildtype and IDH-wildtype, is a category that 
encompasses high-grade diffuse gliomas that lack both 
histone and IDH mutations and can have multiple driver 
mutations (Fig. 3). Some have similar driver mutations as 
adult IDH-wildtype gliomas, including EGFR, PDGFRA, 
TP53, and NF1, but their methylation profiles are distinct 
from adult IDH-wildtype gliomas [61]. Three different sub-
groups have been identified by DNA methylation profiling: 
pHGG RTK1, pHGG RTK2, and pHGG MYCN. Tumors of 
the pHGG RTK1 subtype most frequently have PDGFRA 
alterations and are the type most frequently found in patients 

Fig. 1  Polymorphous low-grade 
neuroepithelial tumor of the 
young. In keeping with the 
“polymorphous” descriptor, 
polymorphous low-grade neu-
roepithelial tumor of the young 
can have a variety of appear-
ances, including that of a diffuse 
glioma (A), ependymoma (B), 
and oligodendroglioma (C). 
These tumors an have abundant 
mineralization (D) and show 
abundant CD34 positivity (E) 
and OLIG2 nuclear staining 
(F). This particular tumor had 
a BRAF V600E mutation, and 
clustered among PLNTYs by 
DNA methylation profiling

Fig. 2  Diffuse midline glioma, 
H3 K27-altered. Diffuse midline 
gliomas tend to look like most 
other diffusely infiltrative 
gliomas (A), including immu-
nopositivity for GFAP (B) and 
OLIG2 (C). In keeping with 
their high-grade nature, Ki67 
is usually quite high (D). H3 
K27M-specific antibody often 
shows robust nuclear staining 
(E); those same tumor cells 
will be weak to negative for 
H3K27me3, whereas admixed 
nonneoplastic cells will still 
be positive (F). Scale bar = 50 
microns in all panels
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with Lynch syndrome. pHGG RTK2 tumors most frequently 
have EGFR amplification and TERT promoter mutations, 
while pHGG MYCN tumors have MYCN activation (usu-
ally amplification) [61]. Like pediatric high-grade gliomas 
with histone mutations, these tumors are highly aggressive 
with poor prognoses, with 2-year survival rate of 23.5% 
and median overall survival of only 17 months, even when 
MGMT promoter methylation is present [54]. Infant-type 
hemispheric glioma (Fig. 4) is a large, hemispheric mass 
that typically occurs during the first year of life and is usu-
ally driven by RTK-activating fusions, including those in 
the NTRK family, ROS1, ALK, or MET [62]. Despite their 
histopathologic similarity to IDH-wildtype glioblastomas, 
these have a better prognosis than the other three pediatric-
type high-grade gliomas, with 5-year survival rates ranging 
from 25 to 50%, and there are some data suggesting that they 
respond to drugs targeting whichever RTK is altered [63].

Circumscribed Astrocytic Gliomas

Gliomas with more well-delineated borders separating 
them from the surrounding brain parenchyma, previously 
referred to as “other astrocytic tumors,” are now catego-
rized as circumscribed astrocytic gliomas. This category 
includes pilocytic astrocytoma, subependymal giant cell 
tumor, pleomorphic xanthoastrocytoma, chordoid glioma  
(Table 1), “astroblastoma, MN1-altered,” and “high-grade 
astrocytoma with piloid features” [2, 51]. Most of the enti-
ties in this category are well established with only minor 
changes in the names, e.g., astroblastoma, MN1-altered and  
chordoid glioma. Astroblastomas, with their perivascular  
rosettes and reverse nuclear polarity, share some  

histomorphologic features with ependymal and embryonal  
tumors (Fig. 5) but are now defined by MN1 alterations 
[64–66]. Patients generally do well following surgical resec-
tion, but when anatomy precludes complete excision, chem-
otherapy and radiation offer some benefit [67]. Chordoid 
glioma (formerly known as “chordoid glioma of the third 
ventricle”), which nearly always occurs in the anterior third 
ventricle of adults, is comprised of spindled to epithelioid 
TTF1- and GFAP-positive cells in a myxoid stroma, a recur-
rent p.D463H missense mutation in the PRKCA gene, and 
is frequently separated from the adjacent brain parenchyma 
with a dense, lymphoplasmacytic infiltrate [68, 69].

High-grade astrocytoma with piloid features, the only new 
circumscribed astrocytic glioma, is an aggressive astrocytic 
neoplasm with a combination of MAPK pathway-activating 
alterations (e.g., involving NF1, FGFR, or BRAF), ATRX 
mutations (manifesting as loss of normal ATRX immu-
nostain), and homozygous CDKN2A/B deletion [70]. It can 
occur anywhere in the central nervous system but most often 
arises in the posterior fossa, and typically occurs in middle-
aged adults [70]. The morphologic features are variable and 
can resemble glioblastoma or pleomorphic xanthoastrocy-
toma (PXA); features reminiscent of pilocytic astrocytoma, 
such as eosinophilic granular bodies, Rosenthal fibers, and 
long, delicate processes are only seen in a third of cases. 

Fig. 3  Diffuse pediatric-type high-grade glioma, H3-wildtype and 
IDH-wildtype. This diffuse pediatric-type high-grade glioma, H3 
wildtype and IDH-wildtype, looked like a typical diffuse glioma infil-
trating into surrounding brain tissue (A); many tumor cells will be 
Ki67 positive (B). This particular tumor had MYCN amplification and 
TP53 mutation, mapped to diffuse pediatric-type high-grade glioma, 
H3 wildtype, and IDH-wildtype by DNA methylation profiling, and 
had already disseminated throughout the cerebrospinal fluid at the 
time of clinical presentation. Scale bar = 50 microns in both panels

Fig. 4  Infant-type hemispheric glioma. Morphologically, infant-type  
hemispheric gliomas may be indistinguishable from adult-type  IDHwt glio-
blastomas, with palisading necrosis (A), abundant mitoses (B), variable  
GFAP positivity (C), and elevated Ki67 (D). However, they will not 
have the same molecular profile as glioblastomas; this tumor had an 
isolated NTRK fusion, and mapped to infant-type hemispheric glioma 
by DNA methylation profiling. Scale bar = 250 microns in A, 50 
microns in B–D 
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While most of these tumors arise de novo, a small subset 
arise in pre-existing grade 1 pilocytic astrocytoma and were 
previously called “anaplastic pilocytic astrocytomas” [70]. 
Recent studies using genomic DNA methylation profiling 
revealed that high-grade astrocytoma with piloid features 
have their own distinct cluster [70]. There is only one ret-
rospective study with any data on long-term prognosis, but 
the 5-year survival rate is roughly 50% and overall survival 
appears to be similar to that for patients with astrocytoma, 
IDH-mutant, WHO grade 4 [70]. As with some of the other 
more recently defined entities, it remains to be seen whether 
high-grade astrocytomas with piloid features respond better 
to conventional therapies versus targeted therapies.

Sometimes, it can be difficult to distinguish between cir-
cumscribed and diffuse astrocytic gliomas. PXAs, for exam-
ple, can look very similar to epithelioid glioblastomas, espe-
cially if the PXA is grade 3 with numerous mitoses and/or 
necrosis. Both are IDH wildtype, both can have CDKN2A/B 
deletion and MAPK-activating alterations (e.g., BRAF 
V600E), and both can arise in similar locations and age 
groups. Genomic methylation profiling is particularly help-
ful in such circumstances, as many tumors thought to be 
epithelioid glioblastomas actually map either to PXA or 
pediatric high-grade glioma, RTK1 subtype [71].

Ependymal Tumors

Because of advanced molecular testing techniques such as 
DNA methylation profiling, categorization of ependymomas 
has completely changed from being based on morphology 
to being based on location and molecular alteration [72]. 

Tanycytic, clear cell, and papillary are listed as morphologic 
phenotypes rather than separate subtypes, and anaplastic 
ependymoma is no longer listed as an entity [2]. The major-
ity of supratentorial ependymomas have fusions involving 
either ZFTA or YAP1 and are derived from radial glial cells 
[73]. ZFTA fusion-positive ependymomas are more com-
mon, comprising 25–58% of all supratentorial ependymo-
mas in adults and 66–84% in children [74–76]. The most 
common fusion partner is RELA, and homozygous deletion 
of CKDN2A/B, which predicts more aggressive clinical 
behavior, may be present [77]. YAP1 fusion-positive epend-
ymomas, which show more indolent behavior than ZFTA 
fusion-positive ependymomas, are rare and tend to occur 
primarily in young children [78]. Other genetic alterations 
predicting their clinical behavior have not yet been well stud-
ied. Either can be assigned a grade of 2 or 3, depending on 
the presence of mitotic activity and microvascular prolifera-
tion [79].

Posterior fossa ependymomas are sorted into PFA and 
PFB categories by DNA methylation profiling [80]. Like 
diffuse midline gliomas, PFA ependymomas show loss of 
H3 K27 trimethylation; however, only a small subset (~4%) 
have histone mutations [81]. Instead, PFA ependymomas 
express more Enhancer of Zest Homologs Inhibitory Protein 
(EZHIP), which binds to and inhibits the catalytic domain of 
PRC2 in a similar manner to the H3 K27M mutated histone 
protein [81, 82]. Such EZHIP overexpression also drives 
the rare diffuse midline gliomas that lack histone mutations, 
and in both PFA ependymomas and diffuse midline gliomas, 
H3 histone mutations and EZHIP alterations are mutually 
exclusive [83]. PFB ependymomas usually show whole chro-
mosome abnormalities such as 22q loss, monosomy 6, and 

Fig. 5  Astroblastoma. Astro-
blastomas can show a variety of 
morphologies, including heavy 
sclerosis and mineralization 
(A). Tumor cells show variable 
GFAP immunopositivity (B) 
but are generally positive for 
OLIG2 (C), epithelial mem-
brane antigen (D), podoplanin 
(E), and SATB2 (F). Scale bar 
in F = 100 microns in all panels
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monosomy 18 [80, 84]. In addition, PFB ependymomas are 
more likely to occur in older adults and adolescents and are 
less aggressive than PFA ependymomas. Gain of chromo-
some 1q and incomplete resection are poor prognostic indi-
cators for all types of posterior fossa ependymomas, and loss 
of 13q suggests worse behavior in PFB ependymomas [85].

Spinal ependymomas, which are their own cluster on 
DNA methylation profiling, have 22q loss like PFB epend-
ymomas [84]. These occur more frequently as intramedul-
lary masses in the cervicothoracic region of the spinal cord, 
in contrast to myxopapillary ependymoma, which occur in 
the lumbar region [86]. For the most part, spinal epend-
ymomas have good outcomes and long progression free 
survival times, except for the subset with MYCN amplifica-
tion, which spread throughout the CSF [87]. Myxopapillary 
ependymoma has its own distinct methylation cluster and 
was historically given a WHO grade of 1 due to its generally 
good prognosis and bland appearance [1]. But, because of 
the possibility of CSF dissemination, which is more com-
mon in younger patients, and because so many patients live 
with persistent disease requiring multiple operations and 
radiotherapy, they are now considered WHO grade 2 in the 
2021 classification [88–90].

Subependymomas, which are still considered WHO grade 
1, are indolently growing glial tumors with subependymal 
morphology. Approximately two-thirds of them arise in the 
fourth ventricle, with the remainder being supratentorial 
[91]. Like ependymomas, they can show cystic changes and 
calcification on imaging but are less likely to show much 
enhancement after contrast administration [92]. The most 
common genetic alterations are the loss of chromosome 19, 
partial loss of chromosome 6, and even H3 K27 mutations, 
all three of which can occur in brainstem subependymomas 
[84]. Overall, the clinical behavior of these tumors is benign 
with occurrence being rare even after subtotal resection, 
even when H3 K27 mutations are present [91, 92].

Embryonal Tumors

Like pediatric gliomas and ependymal tumors, DNA meth-
ylation profiling has resulted in an explosion in the num-
ber of embryonal tumor types, both from the splitting of 
existing tumor types into additional categories and from the 
addition of newly characterized types of tumors [93, 94]. 
Medulloblastomas, the most common embryonal tumors, 
are  divided into four different molecular subtypes, including 
WNT-activated, SHH-activated and TP53-wildtype, SHH-
activated and TP53-mutant, and non-WNT/non-SHH. Pedi-
atric WNT-activated medulloblastomas respond extremely 
well to existing therapies and have excellent prognoses, but 
retain a WHO grade of 4 to reflect their aggressive nature 
without treatment [93, 95–97]. SHH-activated tumors are 

more aggressive if TP53 mutations or MYCN amplifica-
tion are present [96]. Non-WNT/non-SHH tumors, formerly 
known as group 3 and group 4 medulloblastomas, comprise 
the majority of medulloblastomas. As is the case with SHH-
activated tumors, MYCN amplification is a poor prognostic 
indicator [98]. Non-WNT/Non-SHH tumors can be further 
divided into 8 different categories by DNA methylation pro-
filing, with subgroups 2, 3, and 8 having the worst outcomes 
and groups 6 and 7, which are more likely to have favorable 
cytogenetic aberrations, such as gain of chromosome 7 and 
loss of chromosomes 8 or 11, having the best [93].

Three new entities have been added to embryonal tumors. 
The first of these, cribriform neuroepithelial tumor, is a 
provisional entry. It tends to occur in periventricular loca-
tions and has SMARCB1 mutations and INI1 loss, much like 
atypical teratoid rhabdoid tumors [99, 100]. Unlike atypical 
teratoid rhabdoid tumor, however, cribriform neuroepithe-
lial tumors lack rhabdoid morphology and have favorable 
response to therapy with average survival times of approxi-
mately 10 years [99]. CNS neuroblastoma, FOXR2-activated, 
consists of sheets of small, mitotically active, primitive cells 
with high N/C ratios that form occasional rosettes (Fig. 6). 
Like neuroblastomas, they can harbor areas of neuropil and 
ganglion cells. They are rare and newly classified, so there 
is currently little data on their prognosis [101]. CNS tumor 
with BCOR internal tandem duplication is defined by a het-
erozygous internal tandem duplication in exon 15 of BCOR 
[102]. They have small, uniform, ovoid to spindle-shaped 
cells, often arranged in perivascular pseudorosettes that can 
easily be confused with those in ependymal tumors or astro-
blastomas (Fig. 7), and can also have palisading necrosis 
reminiscent of that in glioblastomas. BCOR internal tandem 
duplications do not co-occur with ZFTA or YAP1 fusions, 

Fig. 6  CNS neuroblastoma, FOXR2-activated. CNS neuroblastoma 
with FOXR2-activation features sheets of tumor cells with small 
round nuclei and a high nuclear:cytoplasmic ratio like most other 
embryonal tumors, although the tumor shown here had more abun-
dant neuropil (A). Like many other new tumor entities, these tumor 
cells often arrange themselves in a perivascular pattern (B). Most 
such tumors will also show other high-grade features like necrosis 
and mitoses, but this one did not. Still, it clearly mapped to CNS neu-
roblastoma with FOXR2-activation by DNA methylation profiling. 
Scale bar = 250 microns in A, 100 microns in B 
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MN1 alterations, IDH mutations, or H3 mutations, and DNA 
methylation profiling can be used to reliably distinguish 
them from other morphologically similar entities [102]. 
These tumors are rare, which limits prognostic data, but case 
series suggest the overall prognosis to be poor [102].

Meningioma

Meningothelial tumors are all categorized as one hetero-
geneous type, with 15 distinct morphologic subtypes that 
range in WHO grade from 1 to 3 [2]. Numerous studies char-
acterizing the molecular alterations seen in meningiomas, 
and how they correspond to location and morphology, have 
been performed [103–106]; however, meningiomas are still 
mostly graded the same way they were in the 2016 classifica-
tion with two exceptions. Since TERT promoter mutations 
and homozygous deletion of CDKN2A/B have been associ-
ated with more aggressive clinical behavior, these are now 
sufficient for a WHO grade of 3 even if the histopathology 
does not otherwise meet the criteria [107, 108]. Complete 
resection is still the primary way meningiomas are man-
aged; however, mutations known to lead to more aggressive 
behavior can be used to help guide the decision for adjuvant 
radiation or chemotherapy.

Conclusions

The 2021 WHO CNS tumor classification draws on a wealth 
of data from molecular testing that led to the creation of new 
entities and more accurate stratification of pre-existing enti-
ties. Future clinical trials can recruit more homogeneous cat-
egories of patients, which will allow for better understanding 
of how tumor biology corresponds to treatment response 
and for the development of more targeted therapies. How-
ever, more multi-institutional and multi-national studies will 

be needed to address the less common tumor types. More 
long-term prognostic studies will also be needed to better 
characterize some of the newer entities.
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